Junze ZHOU
Junze ZHOU
Email: junzezhou15@gmail.com
Tel: 510-850-9706
2025.5 - Now Research Scientist, Lawrence Berkeley National Laboratory, California, US
2019 -2025 Postdoc, Lawrence Berkeley National Laboratory, California, US
PhD (2018) Université de Technologie de Troyes, France (Nanophotonics)
MSc (2015) Université de Technologie de Troyes, France (Nano Optics)
BSc (2013) Harbin Institute of Technology, China (Material Physics)
Solid-state Physics / Optics and Optoelectronics
1D/2D Materials / Plasmonics and Polaritons
Scanning Near-field Probe / Nanofabrication and Nanoimaging
I collaborated with imaging and nanofabrication facilities in the Molecular Foundry to develop advanced near-field probes for nanoimaging low-dimensional materials, focusing on exciton-plasmon interactions close to the native length scale of an exciton. Currently, I am exploring applications of the correlation micro/nano-spectroscopy in bioimaging.
J. Zhou*, J. Thomas, T. P. Darlington, E. S. Barnard, A.Taguchi, A. Schwartzberg*, A. Weber-Bargioni*, "Probing and Tuning Strain-localized Exciton Emission in 2D Material Bubbles at Room Temperature ", arXiv:2505.13783 (2025). "Probing and tuning nanobubble emission 2D materials".
J. Zhou*, P. A. D Gonçalves, F. Rimunicci, S. Dhuey, E. S. Barnard, A. Schwartzberg, F. J. García de Abajo*, A. Weber-Bargioni*, "Probing Plexciton Emission from 2D materials on gold nanotrenches", Nature Communications, 15, 9583 (2024). "Near-field probing of exciton-plasmon polaritons."
J. Zhou*, J. Thomas, E. Barre, E. Barnard, A. Raja, S. Cabrini, K. Munechika, A. Schwartzberg*, A. Weber-Bargioni*, ''Near-field Coupling with a Nanoimprinted Probe for Dark Exciton Nanoimaging in Monolayer WSe2'', Nano Letters, 23, 4901-4907 (2023). ‘‘Spectrally and spatially probing ‘dark’ states within WSe2 monolayers in ambient conditions, revealing insights into nanoscale oxidized sites and nanobubble areas.''
J. Zhou*, E. S. Barnard, S. Cabrini, K. Munechika, A. Weber-Bargioni, A. Schwartzberg, '' Integrating Collapsible Plasmonic Gaps on Near-field Probes for Polarization-resolved mapping of Plasmon-enhanced Emission in 2D material'', Optics Express 31, 20440-20448 (2023). ‘‘Presented a cost-effective, reproducible method for fabricating polarization-sensitive, broadband-response Sub-20 nm plasmonic gaps on near-field probes, enabling enhanced nanoscale optical characterization.’’
J. Zhou*, A. Gashi, F. Riminucci, B. Chang, E. S. Barnard, S. Cabrini, A. Weber-Bargioni, A. Schwartzberg*1, K. Munechika*2, ''Sharp, high numerical aperture (NA), nanoimprinted bare pyramid probe for optical mapping'', Review of Scientific Instruments 94, 033902 (2023). "After over 100 slides of failure stories, we propose using this nanoimprinted pyramidal probe to make Tip-enhanced spectroscopy more accessible."
J. Thomas, W. Chen, Y. Xiong, B. A. Barker, J. Zhou, W. Chen, A. Rossi, N. Kelly, Z. Yu, D. Zhou, S. Kumari, E. S. Barnard, J. A. Robinson, M. Terrones, A. Schwartzberg, D. F. Ogletree, E. Rotenberg, M. M. Noack, S. Griffin, A. Raja, D. A. Strubbe, G. Rignanese, A. Weber-Bargioni, G. Hautier, "A substitutional quantum defect in WS2 discovered by high-throughput computational screening and fabricated by site-selective STM manipulation", Nature Communication, 15, 3556 (2024). "STM study of a single defect in 2D materials".
J. Zhou*, K. Nomenyo, C. C. Cesar, A. Lusson, A. Schwartzberg, C. Yen, W. Woon and G. Lérondel*, “Giant defect emission enhancement from ZnO nanorods through desulfurization process”. Scientific report, 10, 4237 (2020). ‘’Discovered a novel and effective method, desulfurization, for controlling oxygen defects in solution-processed ZnO nanostructures. This approach resulted in an efficient green light emission enhancement, as demonstrated through photoluminescence experiments conducted in both ambient and cryogenic conditions.’’
J. Zhou*, L.O. Le Cunff, K. Nomenyo, A. Vial, T. Pauporté, G. Lérondel*, ''Phenomenological modeling of light transmission through nanowires arrays'', Thin Solid Films, 675 43-49 (2019). ‘Simulations using a combined approach of transfer-matrix method, effective medium theory, and Mie theory to investigate light transmission through ZnO nanowires on ITO substrates.’’
Y. Huang, J. Zhou, A. Gokarna, G. Lérondel*, ‘‘Facile, wafer-scale compatible growth of ZnO nanowires via chemical bath deposition: assessment of zinc ion contribution and other limiting factors’’. Nanoscale Advances 2 (11), 5288-5295 (2020). ( Y. Huang and J. Zhou contributed equally to this work) ‘’Wafer-scale ZnO nanowires growth’’
A. Gokarna, R. Aad, J. Zhou, K. Nomenyo, A. Lusson, P. Miska, G. Lérondel*, “On the origin of the enhancement of defect-related visible emission in annealed ZnO micropods”. Journal of Applied Physics, 126, 145104 (2019). (A. Gokarna, R. Aad, and J. Zhou contributed equally to this work ) ‘’Investigations on the defect emission of ZnO through photoluminescence experiments conducted in cryogenic conditions from 4k to 300 k.’’
Junze Zhou. ''UV-visible Luminescent ZnO Based Materials: Synthesis and Emission Engineering''. Micro and nanotechnologies/Microelectronics. Université de Technologie de Troyes, 2018. English. ⟨NNT : 2018TROY0053⟩. ⟨tel-03610915⟩ .
Conference communications
User Meetings at Advanced Light Source, 2023, Berkeley Lab
SPIE Optics + Photonics 2023, San Diego
APS March, Las Vegas, 2023.
NFO16: The 16th International Conference on Near-field Optics, Nanophotonics, and Related Techniques, Victoria, Canada. (2022)
SPIE Optics + Photonics 2022, San Diego.
MRS Spring, Honolulu, 2022.
APS March, Virtual, 2021.
SPIE Optics + Photonics 2018, San Diego. (Invited talk)
User Meetings at Molecular Foundry, Berkeley Lab
Workshop presentation award in L2N laboratory of UT Troyes.
Volunteer program, World Expo 2015, Milan
Summer Program and Presentation award, Tokushima University, Japan
National Scholarship, China
Exchange semester, University of Science and Technology of China
Mr. A. Traoré, Engineer student in UTT, Master research project (6 ECTs credits)
Mr. C. Yang, Master student, Master research project (6 ECTs credits)
Ms. W, Master students, Master research projects (30 ECTs credits)